Effect of post-release sidewall morphology on the fracture and fatigue properties of polycrystalline silicon structural films

نویسندگان

  • D H. Alsem
  • B L. Boyce
  • E A. Stach
  • R O. Ritchie
چکیده

Surface properties canmarkedly affect themechanical behavior of structural thin films used inmicroelectromechanical systems (MEMS) applications. This study highlights the striking difference in the sidewall surface morphology of n+-type polysilicon films from two popular MEMS processes and its effect on fracture and fatigue properties. The sidewall surface roughness wasmeasured using atomic forcemicroscopy, whereas silicon oxide thickness and grain size were measured using (energy-filtered) transmission electron microscopy. These measurements show that the oxide layers are not always thin native oxides, as often assumed; moreover, the roughness of the silicon/silicon oxide interface is significantly influenced by the oxidation mechanism. Thick silicon oxides (20±5nm) found in PolyMUMPsTM films are caused by galvanic corrosion from the presence of gold on the chip, whereas in SUMMiT VTM films a much thinner (3.5±1.0nm)native oxidewas observed. The thicker oxide layers, in combinationwith differences in sidewall roughness (14±5nm for PolyMUMPsTM and 10±2nm for SUMMiT VTM), can have a significant effect on the reliability of polysilicon structures subjecting to bending loads; this is shown by measurements of the fracture strength (3.8±0.3GPa for PolyMUMPsTM and 4.8±0.2GPa for SUMMiT VTM) and differences in the stress-lifetime cyclic fatigue behavior. Published by Elsevier B.V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Oxidation Times Effect on Structural and Morphological Properties of Molybdenum Oxide Thin Films Grown on Quartz Substrates

Molybdenum oxide (α-MoO)thin films were prepared on quartz and silicon substrates by thermal oxidation of Mo thin films deposited using DC magnetron sputtering method. The influence of thermal oxidation times ranging from 60-240 min on the structural and morphological properties of the preparedfilms was investigated using X-ray diffraction, Atomic force microscopy and Fourier transform infrared...

متن کامل

Effect of Thickness on Structural and Morphological Properties of AlN Films Prepared Using Single Ion Beam Sputtering

Aluminum nitride (AlN) thin films have potential applications in microelectronic and optoelectronic devices. In this study, AlN thin films with different thicknesses were deposited on silicon substrate by single ion beam sputtering method. The X-ray diffraction (XRD) spectra revealed that the structure of films with thickness of - nm was amorphous, while the polycrystalline hexagonal AlN with a...

متن کامل

Structural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films

Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...

متن کامل

Structural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films

Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...

متن کامل

A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading

A study has been made to discern the mechanisms for the delayed failure of 2-μm thick structural films of n+-type, polycrystalline silicon under high-cycle fatigue loading conditions. Such polycrystalline silicon films are used in smallscale structural applications including microelectromechanical systems (MEMS) and are known to display ‘metal-like’ stress-life (S/N) fatigue behavior in room te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014